
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4453 235

Analysis and Evaluation of Quality Metrics in

Software Engineering

Zuhab Gafoor Dand
1
, Prof. Hemlata Vasishtha

2

School of Science & Technology, Department of Computer Science, Shri Venkateshwara University, U.P, India1

Associate Professor, Department of Computer Science, Shri Venkateshwara University, U.P, India2

Abstract: In this research paper the study of various software metrics are performed which are classified into three

categories: primitive, abstract and structured. The study is performed to provide software developers, users and

management with a correct and consistent evaluation of a representative sample of the software metrics available. The

analysis and evaluation of metrics was performed in an attempt to: assist the software developers, users and

management in selecting suitable quality metric(s) for their specific software quality requirements and to examine

various definitions used to calculate these metrics.

Keywords: Software Quality Matrices and Software Engineering

I. INTRODUCTION

The research in the area of software quality metrics

generally and software quality particularly is still in a state

of flux. This is because the area is in its infancy. There is a

great demand for ideal software quality metrics and a real

need for distinct and precise definitions of software quality

and related terms. Software metrics can be considered as

the means of measuring software qualities. These

measurements are required for quantitative comparison,
cost estimation and quality evaluations. The term software

quality, for which various metrics have been developed

and applied, is one of those terms in Software Engineering

which has not yet been defined clearly, precisely and

properly despite numerous attempts. Moreover, other

terms related to software quality such as criterion, factor,

characteristic, attribute, etc., are also not defined precisely

and clearly by Software Engineers. For example, Hocker

et al [1] use the terms attribute and criterion for the same

thing. The term quality characteristic is used by McCall et

al [2] as a quality factor. Kitchen ham et al [3] uses the
terms quality factor, quality attribute and quality

characteristic with the same meanings. Further, the term

quality is used by Jones [4] to denote the absence of

defects from the software without defining the term

quality. Yourdon [5] has used the term quality without

having any definition. He considered a high quality

software system design, as one which consists of modules

having a high degree of functional cohesion.

The IEEE standard glossary has defined the term software

quality. In their definitions, they have used certain terms

or words without giving any definition. For example, the
terms "characteristics" and "attributes" have been used

without giving a definition in the glossary. This confuses

the users, management and developers. Boehm et al [6]

have not given any specific definition of terms software

quality and software quality characteristic when they were

discussing and developing their hierarchy of software

quality characteristics. A study similar to Boehm's

approach was carried out by McCall et al [2] to define

software quality aspects. They have defined quality as: "a

general term applicable to any trait or characteristic,

whether individual or generic; a distinguishing attribute
which indicates a degree of excellence or identifies the

basic nature of something". In the above definition, the

authors have not given any definition for the terms

characteristic and attribute which are used in their

definition. Later during the study of software metrics, it

was observed that, up to now, efforts in developing

software quality metrics have been concentrated on very

few quality attributes such as complexity, stability, etc. On

the other hand, for certain important quality attributes such

as usability, readability, etc., real metrics are still not

available. Moreover, some desired attributes of software
quality can only be satisfied at the expense of other

attributes. The evaluation of the available software metrics

is mainly needed to select a suitable candidate metric (s)

which can be used as a measurement, estimation and

forecast of the quality of a software system.

To evaluate the available software metrics, a set of criteria

of goodness is essential. Halstead [8] has developed

software metrics which have received much attention in

literature of software science. These metrics are based on
counting the lexical tokens in the program. Many attempts

have been made to create quantifiable control flow

complexity metrics such as McCabe [7], Woodward [9]

etc. These metrics are based on graph theory. Further

many other researchers such as Henry et al [10], Haney

[11] etc., have developed a number of software structured

metrics.

These metrics are based on system component

connections. There are a large number of software metrics

available, but the difficult problem is, how to evaluate and

select a suitable and reliable one. In this study, software

metrics are classified into three categories so that an

analytical comparative evaluation of the available metrics

can be carried out easily. These categories are:

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4453 236

1) Primitive software science metrics which are based on

counting lexical tokens of a program.

2) 2. Abstract software metrics which are based on graph

theory.

3) 3. Structured software metrics which are based on

software system component connections.

II. LITERATURE SURVEY

Metrics for software products can be classified into the

following categories:

PRIMITIVE SOFTWARE METRICS

The primitive metrics are based on counts of lexical tokens

in a program or program interface features. This type of

metric can be applied during the implementation phase of

the software development life cycle.

Halstead's Metric

Halstead [8] is the first who presented lexical analysis in

his theory of software science. He argued that algorithms

have measurable characteristics analogous to the physical

laws. In a given program he counted the number of unique

or distinct operators (=n1), unique or distinct operands

(=n2), total usage of all of operators (=Nl), and total usage

of all of operands (=N2).

Albrecht A.J Function Points Metric

Albrecht A.J. [12] has developed a metric called the

function points metric. His metric is in the same class as
Halstead's metric [8], but instead of counting operands and

operators as in the Halstead case, Albrecht counts the

number of external functions in the program. Albrecht's

function points metric is developed to estimate the

complexity of a function which a program performs in

terms of input and output data. The general approach is to

list, and count the number of external user inputs,

inquiries, outputs, master files, and interfaces to be

delivered by the development project. Albrecht A.J [12]

has pointed out that "these factors are the outward

manifestations of any application. They cover all the
functions in an application". These counts are weighted by

numbers so as to reflect the function value to

user/customer. The weights used were determined by

Albrecht through debate and trial.

ABSTRACT METRICS

The abstract metrics are based on graph theory. In this

category for example the researchers measure the

properties of a program control flow diagram. The

researchers have developed metrics which are derived

from a flow graph representation of a program and use

these to show the difficulty of carrying out tasks such as
coding, debugging, testing and modifying software. This

type of metric can be applied to the implementation phase

and to the design phase of the software development life

cycle.

McCabe's Metric

Thomas McCabe [7] has developed a complexity metric

which is based on the control flow graph representation of

a program. The control flow graph is defined as a directed

graph in which each basic block of the program is

represented by a node, and the possible flow of control

between these blocks is represented by an edge. McCabe's

metric is denoted by V(G), and is computed as:

V(G) = E-V+2P where;

E is the number of edges in the flow graph representation

of the program,

V is the number of nodes in the flow graph representation

of the program,

P is the number of connected components in the flow

graph.

McCabe has recommended that: the upper bound of

complexity, V(G) in any particular module should have a

maximum value of "10". If the complexity of a module is

greater than "10", then the module should be decomposed

or recoded. This enables a software engineer to control the

size of a program by setting an upper limit to the measure

instead of using just physical size. If a program is
decomposed into m connected components, then the value

of McCabe's metric for that program will be the sum of the

cyclomatic complexities of the components calculated as:

V (G) = v(Gi)m
i=1 where,

V (Gi) is the complexity of the individual modules

McCabe showed that the cyclomatic complexity of any

structured program is equal to the number of predicates in

the program plus one. Applying McCabe's metric to the

reduced graph G' gives a measure which is termed the

essential cyclomatic complexity. McCabe's essential

cyclomatic complexity number, EV (G')-l for a structured

program.

Knot's Metric

The Knot's metric is a measure which has been proposed

by Hedley Knots's metric is based on control flow the

actual sequential source program of structuredness

Woodward et al [9]. Their edges drawn on The Knots

measure are denoted by K and it is calculated as the

number of unavoidable crossing points of the control flow

edges. This is defined mathematically by Woodward et al

[9] as: if a jump from ordered pairs of line A to line B is

represented by the integers (A,B) then the jump

(X,Y)causes a Knot to occur, if any of the following two
conditions is satisfied:

1) MIN{A,S} < MIN{X,Y}, < MAX{A,S} AND

MAX{X,Y} > MAX{A,S}

OR

2) MIN{A,S} < MAX{X,Y}, < MAX{A,S},AND

MIN{X,Y} < MIN{A,S}.

Woodward et al [9] used the idea of control graph

reduction to define what they called the "essential knots"

of a program. A control flow graph of a computer program

can be represented as a directed graph. Such a directed

graph can be reduced by replacing the sub graphs

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4453 237

corresponding to admitted primitives of structured

programming by a single node. Woodward et al [9] stated

that" a structured program will be reducible to a single

node with zero knots. This leads to a definition of the

remaining knots as the essential knots of the program".

STRUCTURED METRICS

The structured metrics deal with measuring the structured

properties of software design. Many authors have

described how to measure or assess the qualities of a

system by measuring properties such as connectivity and

cohesion. Yourdon [13] has used cohesion and coupling as

metrics to measure the qualities of modules. Such metrics

can have significant impact on the software design and

development task. This is because structured metrics can

be taken early in the life cycle of software system

development task [14].

Haney's Stability Metric

Haney [8] has developed a metric for determining the

stability of large systems which depends on module

connections. Haney's metric is based on the assumption

that the intermodule connections are the main causes of

high cost and delayed delivery dates. These types of

problems usually occur in systems where modules are

heavily connected (highly coupled) and any change to a

single module causes subsequent changes in most of its

connecting modules. The system's resistance to such

changes is called system stability. Haney assumed that a
system consists of n modules and Pij is the probability that

a change in module i induces a change in module j.

Further, with each module i, there is an associated number

N which is the number of changes that must be made in

module i upon the integration with the system. The

probability that a change to module i propagate to module

j in two steps is given by:

 Pikn
k=1 Pkj

Which represents the sum of probabilities that a change in
module i is propagated to module k and then to module j.

In general, the (ij)th element of the probability matrix P

raised to the kth power represents the probability that a

change in module i will propagate to module j in k.

Myer's Metric

Myer, G.J., [15] has developed a structured metric which

depends on the degree of interdependence among the

components of a program. The major step in calculating

this metric is to develop a complete dependence metric

(COM) which describes all dependencies among all
modules. Once such a matrix is obtained, the following

can be determined easily:

1) The summation of all elements in the matrix divided

by the dimension of the matrix (no. of the modules)

can give the expected number of modules that must be

changed when any single module is changed. The

same metric is used by Myers [16] to compute the

complexity of the overall program.

2) The summation of all elements in any row i in the

matrix can give the expected number of the modules

that must be changed when module i is changed.

The first order dependence matrix is derived using the

following steps.
1) Evaluate the coupling among all of the modules in the

program.

2) Construct an M*M coupling matrix, C, where; M

denotes the number of modules in the program.

3) Evaluate the strength (cohesion) of each module in the

program.

S. Henry and D. Kafura's Metrics

Structured metrics based on information flows have been

developed by S. Henry and D. Kafura [10]. Their metrics

measure:

1. Procedure complexity: The procedure complexity

depends on two factors;

a. the first factor is the internal complexity of the

procedure. This is based on counting the number

of lines of code in the procedure,

b. the second factor involves the complexity of the

procedure's connections to its environment. This

involves the information flow connections of a

procedure to its environment. The information

flow can be determined by the fan-in and the fan-
out. The fan-in and the fan-out represent the total

possible number of combinations of an input

source to an output destination. The whole

procedure complexity is computed as:

P(C) - L* (fan-in*fan-out) **2 where

L is the procedure length expressed in lines of code, fan-in

is the local flows into a given procedure plus the number

of data items from which the procedure reads, fan-out is

local flows coming out from a given procedure plus the

number of data items to which the procedure writes.

According to Henry et al [6], the local flow of information

from module A to module B occurs if one or more of the

following conditions hold:

1. If module A calls module B,

2. If module B calls module A and A returns a value to

a, which a subsequently utilizes, or

3. If module C calls modules A and B passing an output

value from A to a.

The above procedure complexity can be helpful in locating

the stress point the procedure with heaviest data traffic) of

the software system.

2. Module complexity metric

The module complexity is computed as the sum of the

complexities of the procedures within the module. Where

a module is defined as: with respect to a data structure D

the module consists of those procedures which either
directly update 0 or directly retrieve information from D

[10].

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4453 238

3. Interface complexity

Interface complexity depends on two factors; the

interfaces which connect the system components, and the

number of information paths used to transmit information

between the components of the system.

III. EVALUATION OF THE SOFTWARE

METRICS

There are very many software metrics available, and it is a

difficult problem to evaluate and select a suitable and

reliable one. Most of these metrics measure the complexity

attribute of a control flow graph of a computer program.

Baker et al [17] chose three software metrics for the
purpose of comparing and evaluating them. These metrics

were Halstead's metrics [8], McCabe's metric [7], and the

Knot metric [8]. Baker et al have showed some basic

properties of each of them.

 However, the drawback of their approach was that they

did not consider all the necessary aspects of these metrics

such as the validity, applicability, etc. Therefore Baker et

al descriptions are not enough to select a suitable metric.

Further, they did not mention any thing about the

structured metrics which are very important at least for the

management of software systems.

 In the following section a set of detailed criteria of

goodness are given against which, each software metric

can be evaluated.

General Criteria of Goodness

General criteria of goodness are those criteria which can

be applied to any metric for the purpose of evaluation. In

this research paper we are using three basic criteria which

are explained below.

Applicability: the term applicability means the suitability

of metric(s) to the output of different phases of the system

development life cycle, i.e., number of the software life

cycle phases in which the metric under study can be

applied.

Modularity: Modularity is derived from module and it

can be defined as: the extent to which a software system

can be decomposed into modules provided that a change in

one module has a minimal impact on other module.

Modularity can be achieved by isolating frequently

occurring sequences of duplicate code [18]. It is

worthwhile knowing how much the modularization issue

can affect the value of the software metrics.

Language Independency: language independency means

the software metric(s) should be computable for any

software system, independent of the language in which the
system is written.

Comparison between the present metrics

The criteria of goodness were generated after performing a

comprehensive study of a selection of the most popular

metrics.

PRIMITIVE SOFTWARE METRICS

Halstead metrics have received considerable attention in

the software literature, so in this portion we apply the

above criteria of goodness, to Halstead metrics.

Applicability

Halstead's metrics which are based on collecting the

lexical tokens in a program are applicable to the

implementation phase of the life cycle. This is accepted by

Halstead [8]. According to Baker, et al [17] the software

science metrics are generally developed to measure overall

program complexity. It would be possible to apply

Halstead's metrics to the output of each phase of the life

cycle provided that at each phase notations can be

represented as lexical tokens. However, the main difficulty

which may arise is the decision about which entity should
be treated as an operand and which as an operator. There

are other situations which also cause confusion. For

example, a function reference may serve as an operand

and operator at the same time.

Language Independency

Halstead's metrics n (program vocabulary), N (program

length) and V (the program volume) are obviously

language independent according to the definition given.

According to the more usual definition of language

independency they are language dependent. This is

because these metrics are directly depend on counting the
number of operators, operands, and their occurrence in the

program, and the definition of operators and operands

varies from language to another.

Modularity

Modularity may cause a reduction in a program's observed

length, and therefore Halstead's metrics involving this will

be affected by the modularization issue. According to

modularity principles, the two similar parts must be

combined in one subunit which must be isolated and then

interfaced with the other subunits of the program. This
modularity principle will cause a reduction in the observed

program length, hence the value of Halstead's metrics will

be decreased. Therefore, Halstead's metrics do reflect the

reduction in the code which occurs as a result of applying

a modularity technique. This is because the number of

tokens will be decreased in the case of modular

programming.

ABSTRACT METRICS

McCabe's metric [7] will be considered as examples for a

comparison.

Applicability

McCabe's and the knot metric are designed to measure the

control flow complexity of a program. Therefore, they are

applicable to the implementation software development

life cycle. The phase of the output of the design phase may

be the following: graphs, tables, data design, program

design, module design, etc. McCabe's metric can be

applied to some of the components of the output of the

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4453 239

design phase, where the data flow graph and control flow

graph are involved. For example, the design of each

module, may be documented by a module input/output

diagram, a module control flow diagram, a module data

flow graph, etc., therefore it is possible to apply McCabe's

metric to measure the complexity of the module control
flow diagram. The result is a certain McCabe number,

which has an indication about the design phase.

Language Independency

McCabe's metric is language independent, since it is based

on the flow graph representation of any program.

Modularity

McCabe has suggested a value of "10" as the maximum

complexity measure for a module to be manageable.

Further, McCabe represented the control flow graph of a
program as a directed graph. This directed graph can be

reduced by replacing the proper sub graphs and then

applying McCabe's metric, the obtained measure is the

essential cyclomatic number. McCabe's essential

cyclomatic complexity number can be used to discover

whether a certain program needs further modularization or

not. This is can be done by applying the essential

cyclomatic number technique to a module in a program. If

that module is highly complex, and its cyclomatic number

could not be reduced to less than or equal "10", then a

further modularization would require the redesign of that

module. This shows that McCabe's metric in such case can
be affected by the modularity criterion. That McCabe's

metric may fail to reflect the modification which is caused

by modularisation.

STRUCTURED METRICS

In this portion we apply the generated criteria of goodness

of to Henry et al metrics [10].

Applicability

Henry et al structured metrics are based on the

measurement of information flow between system
components. Certain metrics are developed to measure

procedure complexity, module complexity and module

coupling. The procedure complexity metric is based on

counting lines of code in a given procedure and the

information flow connection of a procedure to its

environment. The module complexity metric is based on

the sum of the complexities of the procedures within the

module. The module coupling metric is based on the

extent to which two modules are coupled to each other.

The code length metric can be applied to an

implementation phase of the software system life cycle.

This is because the code length metric was defined by
Henry et al [10] as “the number of lines of text in the

Source code for the procedure". This is equivalent to

counting the number of statements in a program. However,

such a metric cannot represent the full complexity of a

procedure. This is because a procedure with small length

but which contains predicate nesting and iterating

statements is more complex than a procedure with a large

length which contains simply a sequence of assignment

statements. The coupling metric can be used as a tool

during the implementation phase to indicate the effect of

modifying a module on the other modules of a software

system.

Language Independency
Henry et aI metrics deal software system connectivity by

directly with the observing the flow of information among

software system components. Since such information flow

can be determined for any language therefore Henry et al

metrics are language independent.

Modularity

It is one of the goals of modularisation to ensure that each

procedure occurs in one and only one module [19]. When

a procedure is located in more than one module, the

modularisation becomes improper; this is because
coupling will increase between the modules. The above

problem can be discovered by Henry et aI module metric.

This is because those procedures which violate the

modularity principle will increase the value of the module

metric and should be more prone to errors due to their

connections to more than one module. To have a minimum

value of the module metric is considered by Henry et al as

a satisfactory result towards modularity. However, this is

not the only way to minimise their metrics.

IV. CONCLUSION

As mentioned, the software metrics can be divided into

three categories. That is primitive, abstract and structured.

In the case of Halstead's metrics most of the relations

between the parameters are nondeterministic and

dependent on estimation. Further no attempt has been

made to use operational research or probabilistic models

for the relationships. Even though the existence of a high

correlation between the measurements of program length,
volume, size and the number of bugs in the program can

be demonstrated, this does not ensure that program length,

size and volume are essentially good predictors of errors.

Neither can it be suggested that errors can be reduced by

reducing the program length, size and volume [19]. The

second category of software metrics (those which are

based on the graph theory) are related to the order in

which the various statements of a program are executed.

Any alteration in the program statements sequential flow

can be used as a measure of control flow complexity.

Some of the control flow metrics are related to the
important criteria such as the number of errors present in a

piece of code and the time available to find and correct

these errors [7]. Static measures have been created, in

terms of which the source programs are analysed, and the

software metrics are obtained and quantified. The

researchers have also attempted to create a dynamic

measure by introducing data flow, data structure, and

analysing the program performance during execution. The

final category of software metrics has certain advantages

for a manager's overall understanding of system

complexity and its impact on system costs and
performance. Although the last category is based on

structure properties of software design and seems to have

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4453 240

some strong attractions, there is not sufficient research to

give a true assessment of its value. Generally it can be

concluded that, no approach at present can be considered

as a standard and true measure of software systems. The

metrics which are available now are not sensitive to errors.

Metricians never show the negative results of their metrics
whereas positive ones are published proudly.

REFERENCES
[1]. Ho~cker H., Itzfeldt M. and Timm M., "Comparative Description

of Software Quality Measurement", GMD-Studien, March, 1984.

[2]. McCall J.A., Richard P.R. and Walters G.F., "Factors in Software

Quality", Technical Report 77 CIS02, Vol. 1, 2, and 3, Sunnyvale,

CA, General Electric Command and Information Systems, 1977.

[3]. Kitchenham B.A. and Walker J.G., "Test Specification and Quality

Management, the Meaning of Quality", Deliverable A2l, Alvey

Project SE/031, Report to the Alvey Directorate, 27th, May, 1986.

[4]. Jones T.C., "Measuring programming Quality and Productivity",

I.B.M. System Journal, Vol. 17 No.1, PP. 9-64, 1978.

[5]. Yourdon E., "Structure Design", Fundamentals of a Discipline of

Computer Program and System Design", 1978.

[6]. Boehom B.W., et al., "Characteristics of Software Quality", TRW

Series on Software Technology, Vol. 1 North-Holland, 1978.

[7]. McCabe T.J., "A Complexity Measure ", IEEE Transaction on

Software Engineering, SE-2, PP. 308-320, 1976',

[8]. Woodward M.R., Hennel M.A. and Hedly D., "A Measure of

ControI FIow Complexity in Program Text", IEEE Transaction on

Software Engineering PP. 45-50, 1979.

[9]. Henry S.M. and Kafura D., "Structure Metrics Based on

Information Flow", IEEE Transaction on Software Engineering,

Vol. SE-7, No.5, PP.510-S18, Sep. 1981.

[10]. Haney F.M., "Module Connection Analysis", A Tool for

Scheduling Software Debugging Activities, Proceeding Fall Joint

Computer Conference, PP. 173-179, 1972.

[11]. Albrecht A.J., "Measuring Application Development Productivity”

in Proc. IBM Application Develop. Symposium, Monterey, CA, 14-

17th Oct.1979. PP. 83

[12]. Halstead M.H., "Elements of Software Science", New-York,

Elsevier North-Holland INC, 1977.

[13]. Kafura D. and Canning J., "A Validation of Software Metrics Using

Many Metrics and Two Resources", Proceding of 8th International

Conference on Software Engineering, August, PP. 378-385, 1985

[14]. Myers G.J., "Reliable Software Through Composite Design", N.V.

Van-Nostrand, R. Heinhold 1975.

[15]. Myers G.J., "A Software Reliability, Principle and Practices", A

WileY-Interscience publication, John Wiley and Sons, 1976.

[16]. Baker A.L. and Zweben S.H.,"A Comparison of Measures of

Control Flow Complexity" IEEE Transaction on Software

Engineering, Vol. SE-6, no.6 ,Nov. 1980, PP. 506 -512.

[17]. Baker A.C. and Zweben S.H." "The Use of Software Science in

Evaluating Modularity", Concepts", IEEE Transaction on Software

Enginnering Vol. SE-5, No.2 March 1979, PP. 110-120.

[18]. Kearney J.K., Sedlmeyer R.L., Thompson W.B., Gray M.A. and

Adler M.A. "Software Complexity Measurement" Communication

of ACM Vol. 29, No. 11, November, 1986.

